
Download free eBooks at bookboon.com

Go Faster!

80

Core Concepts (Continued)

5 Core Concepts (Continued)

5.1 Introduction

his chapter continues our examination of the core constructs of the TR model (principally the Field Values and Record

Reconstruction Tables). However, the chapter is rather more of a potpourri than the previous one. Its structure is as follows.

Following this short introductory section, Section 5.2 ofers some general observations regarding performance. Section

5.3 then briely surveys the TR operators, and Sections 5.4 and 5.5 take another look at how the Record Reconstruction

Table is built and how record reconstruction is done. Sections 5.6 and 5.7 describe some alternative perspectives on certain

of the TR constructs introduced in Chapter 4. Finally, Section 5.6 takes a look at some alternative ways of implementing

some of the TR structures and algorithms also irst described in that previous chapter.

5.2 Some Remarks on Performance

It seems to me undeniable that the mechanisms described in the previous chapter for representing and reconstructing

records and iles are vastly diferent from those found in conventional DBMSs, and I presume you agree with this

assessment. At the same time, however, they certainly look pretty complicated ... How does all of that complexity square

with the claims I made in Chapter 1 regarding good performance? Let me remind you of some of the things I said there:

[TR is] a technology that lets us build database management systems (DBMSs) that are ... orders of magnitude

faster than any previous system ... [A] relational system ... using TR technology should dramatically outperform

even the fastest of those [previous] systems ... [and] I don’t just mean that queries should be faster ... [Updates]

should be faster as well.

—from Chapter 1

Well, let me say a little more now regarding query performance speciically (I haven’t really discussed updates yet, so

I’ll have to come back to the question of update performance later—actually in the next chapter). Now, any given query

involves two logically distinct processes:

a) Finding the data that’s required, and then

b) Retrieving that data.

TR is designed to exploit this fact. Precisely because it separates ield value information and linkage information, it

can treat these two processes more or less independently. To ind the data, it uses the Field Values Table; to retrieve it,

it uses the Record Reconstruction Table. (hese characterizations aren’t 100 percent accurate, but they’re good to a irst

approximation—good enough for present purposes, at any rate.) And the Field Values Table in particular is designed to

make the inding of data very eicient (for example, via binary search), as we saw in Chapter 4. Of course, it’s true that

subsequent retrieval of that data then involves the record reconstruction process, and this latter process in turn involves

a lot of pointer chasing, but:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

81

Core Concepts (Continued)

•	 Even in a disk-based implementation, the system will do its best to ensure that pertinent portions of both

the Field Values Table and the Record Reconstruction Table are kept in main memory at run time, as we’ll

see in Part III. Assuming this goal is met, the reconstruction will be done at main-memory speeds.

•	 he “frills” to be discussed in Chapters 7-9 (as well as others that are beyond the scope of this book)

have the efect, among other things, of dramatically improving the performance of various aspects of the

reconstruction process.

•	 Most important of all: Almost always, inding the data that’s wanted is a much bigger issue than returning

that data to the user is. In a sense, the design of the TR internal structures is biased in favor of the irst of

these issues at the expense of the second. Observe the implication: he more complex the query, the better

TR will perform—in comparison with traditional approaches, that is. (Of course, I don’t mean to suggest

by these remarks that record reconstruction is slow or ineicient—it isn’t—nor that TR performs well on

complex queries but not on simple ones. I just want to stress the relative importance of inding the data in

the irst place, that’s all.)

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Go Faster!

82

Core Concepts (Continued)

I’d like to say more on this question of query performance. In 1969, in his very irst paper on the relational model [5],

Codd had this to say:

Once aware that a certain relation exists, the user will expect to be able to exploit that relation using any

combination of its attributes as “knowns” and the remaining attributes as “unknowns,” because the information

(like Everest) is there. his is a system feature (missing from many current information systems) which we shall

call (logically) symmetric exploitation of relations. Naturally, symmetry in performance is not to be expected.

 —E. F. Codd

Note: I’ve reworded Codd’s remarks just slightly here. In particular, the inal sentence (the caveat concerning performance)

didn’t appear in the original 1969 paper [5] but was added in the expanded 1970 version [6].

Anyway, the point I want to make is that the TR approach gives us symmetry in performance, too—or, at least, it comes

much closer to doing so than previous approaches ever did. his is because, as we saw in Chapter 4, the separation of

ield values from linkage information efectively allows the data to be physically stored in several diferent sort orders

simultaneously. When Codd said “symmetry in performance is not to be expected,” he was tacitly assuming a direct-

image style of implementation, one involving auxiliary structures like those described in Chapter 2. However, as I said

in that chapter:

[Auxiliary structures such as pointer chains and] indexes can be used to impose diferent orderings on a

given ile and thus (in a sense) “level the playing ield” with respect to diferent processing sequences; all of

those sequences are equally good from a logical point of view. But they certainly aren’t equally good from a

performance point of view. For example, even if there’s a city index, processing suppliers in city name sequence

will involve (in efect) random accesses to storage, precisely because the supplier records aren’t physically stored

in city name sequence but are scattered all over the disk.

 —from Chapter 2

As we’ve seen, however, these remarks simply don’t apply to the TR data representation.

And now I can address another issue that might possibly have been bothering you. We’ve seen that the TR model relies

heavily on pointers. Now, the CODASYL “network model” [14,25] also relies heavily on pointers—as the “object model”

[3,4,28,29] and “hierarchic model” [25,56] both do also, as a matter of fact—and I and many other writers have criticized

it vigorously in the past on exactly that score (see, for example, references [10], [21], and [37]). So am I arguing out of

both sides of my mouth here? How can TR pointers be good while CODASYL pointers are bad?

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

83

Core Concepts (Continued)

Well, in fact there are several diferences between TR pointers and CODASYL pointers. he biggest of those diferences

has to with the question of the target audience: Who is the user1 of the technology supposed to be in each case?

•	 he target audience for TR is clearly system programmers, whose job it is to build DBMSs and other data

management systems—for example, data mining tools—on top of a TR implementation. In other words, a

TR implementation, viewed in isolation, is not and is not meant to be a complete DBMS as such, and the TR

model is not and is not meant to be the application programming interface to such a DBMS.

•	 By contrast, the target audience for CODASYL is application programmers, whose job it is to build

application systems—for example, a payroll system—on top of a CODASYL DBMS. In other words,

a CODASYL implementation deinitely is (or was) meant to be a complete DBMS as such,2 and the

“CODASYL model” is (or was) meant to be the application programming interface to such a DBMS.

And, of course, it’s well established that system programmers do need to be able to make use of pointers, for all kinds of

reasons. On the other hand, it’s equally well established that allowing—or, worse, requiring—application programmers

to make use of pointers is a very bad idea, again for all kinds of reasons (indeed, this fact is a major justiication for the

exclusion of pointers from the relational model [40]).

Just as an aside, I simply can’t let the foregoing remarks go by without mentioning the distressing fact that, as I write, most

of the mainstream SQL vendors (following the current SQL standard [53]) are busily incorporating pointers—pointers,

that is, that are visible to the application programmer—into their “model.” Reference [40] refers to this “feature” of SQL

as a Great Blunder, and explains just why it is a blunder; for example, it shows among other things that pointers and a

good model of type inheritance are fundamentally incompatible. And reference [30] gives numerous additional reasons

as to why the relational model should categorically not be extended or “improved” to include pointers.

Back to the comparison with CODASYL. Another big diference between CODASYL pointers and TR pointers is that

CODASYL pointers apply at the record level, while TR pointers apply at the ield level. One consequence of this diference

is that CODASYL structures are in fact parent/child structures, in the sense of Chapter 2; as a direct consequence, they

sufer from all of the problems of such structures identiied in that chapter. In particular, therefore, while CODASYL

pointers might in principle be used to provide “symmetric exploitation” (although they certainly aren’t used that way in

practice), they certainly don’t provide symmetry in performance, because the records can be physically clustered in at

most one way (again, see Chapter 2). he same is not true with TR pointers, as we know.

5.3 TR Operators

Now we come to another issue that I’ve been ducking slightly so far. I’ve claimed repeatedly that TR is a model. As such,

it must provide some operators to operate on the “objects”—the Field Values Table, etc.—that I’ve been concentrating on

so far (as well as providing those “objects” themselves, of course). So what are the TR operators?

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

84

Core Concepts (Continued)

Well, at the most fundamental level, of course, TR certainly includes everything necessary to build, search, access, and

maintain tables such as the Field Values Table, including in particular all of the obvious subscripting, assignment, and

comparison operators. It also includes operators for allocating and deallocating storage and carrying out other such utility

functions. All of these operators are only to be expected.

At a slightly higher level, TR also includes a set of operators that are described in some detail in reference [63]. However,

most of those “higher-level” operators are still quite low-level in nature; indeed, most of them are intended for use in the

implementation of still higher-level operators that will presumably be used by the system programmers mentioned in the

previous section. For that reason, I don’t think it’s worth getting into details of those lower-level operators here. However, I

do want to say a little about the “system programming interface” ones, even though those operators aren’t really primitive

operators of the TR model as such. (Indeed, reference [63] shows how they could actually be implemented in terms of

the lower-level operators that it does describe.)

Let’s assume that techniques such as those discussed in Chapter 4—for example, binary searches on columns of the Field

Values Table—have already been used to determine that some particular record is of interest. Let me immediately explain

what I mean when I say that some record has been “determined to be of interest.” To be speciic:

•	 When I say “some particular record,” I mean a record of the applicable user ile.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Go Faster!

85

Core Concepts (Continued)

•	 When I say such a record is “of interest,” I mean we want the record in question—or the tuple corresponding

to that record, rather—to be retrieved, deleted, or updated. (Inserting a new record or tuple is diferent, of

course; we can’t sensibly talk about the new record having been “determined to be of interest,” because the

record doesn’t exist yet—at least, not in the database.)

•	 And when I say techniques have been used “to determine” that the record in question is of interest, I mean

it’s been determined that some cell [i,j] of the Record Reconstruction Table corresponds to some portion of

that record; more precisely, it’s been determined that cell [i,j] of the Record Reconstruction Table contains

a pointer that points to a cell in the Field Values Table that contains some portion of that record. In other

words, the record in question is that unique record that corresponds to that particular cell [i,j] of the Record

Reconstruction Table. It’s convenient to say, loosely, that the record in question “passes through” that cell [i,j]

of the Record Reconstruction Table.

With all of that preamble out of the way, then, the TR operators I want to consider are as follows:

•	 Retrieve the record passing through cell [i,j] of the Record Reconstruction Table.

•	 Delete the record passing through cell [i,j] of the Record Reconstruction Table.

•	 Update the record passing through cell [i,j] of the Record Reconstruction Table.

•	 Insert a new record.

Of these operators, retrieve has efectively been discussed at length already in Chapter 4—it’s essentially just the business

of record reconstruction as described in that chapter (in Section 4.4 in particular). he other three operators are discussed

in detail in the next chapter.

One last remark to close the present section: If you happen to be familiar with traditional approaches to implementing

the relational model, you might have been expecting to see certain other operators mentioned in the discussion above.

For example, the System R prototype [1] consisted of a frontend called the Relational Data System (RDS) and a backend

called the Relational Storage System (RSS);3 the RDS translated user requests—SQL statements, in other words—into

RSS operations, and those RSS operations performed such functions as searching indexes, committing and rolling back

transactions, and so forth. And those RSS operators included many things that have no direct counterpart in the TR model

at all. Some of those operators (for example, those to do with indexes) are omitted from TR because TR simply has no

need of them. However, others (for example, COMMIT and ROLLBACK) are omitted because such functionality is meant

to be provided above the TR interface. (Indeed, the RSS was really an entire multiuser DBMS in its own right, albeit one

whose user interface was rather low-level. By contrast, TR—or a TR implementation, rather—is not a complete DBMS

in its own right; rather, it’s meant among other things to serve as the storage manager component for such a DBMS.)

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

86

Core Concepts (Continued)

5.4 Building the Record Reconstruction Table: An Alternative Approach

In the introduction to Chapter 4, I said I’d occasionally make some mention of alternative implementation schemes for

certain aspects of the TR model. In keeping with that promise, I’d now like to take a look at an alternative way of building

the Record Reconstruction Table. Note: It might help to repeat the point from Chapter 4 that the Record Reconstruction

Table is built directly from the ile (the Field Values Table isn’t involved in the process at all).

Now, you might recall that in Chapter 4, Section 4.5, I showed how we could use the Permutation Table instead of the

Record Reconstruction Table in order to perform the record reconstruction process. However, I also said it wouldn’t be

very eicient to use the Permutation Table in that way, because we’d have to do sequential searches on the columns of that

table in order to ind the record numbers (that’s why we replaced the Permutation Table by the Record Reconstruction

Table in the irst place). he trouble is, though, the algorithm for building the Record Reconstruction Table from the

Permutation Table still involves doing those same sequential searches—admittedly only when the Record Reconstruction

Table is built, not every time it’s used, but those searches still represent overhead, and it would be nice to eliminate that

overhead if we can.

It turns out we can improve matters by exploiting the inverses of the permutations in the Permutation Table. Consider

once again the original Permutation Table from Chapter 4, Section 4.5 (see Fig. 5.1). As you can see from that table, the

S# permutation (for example) is the sequence

4, 3, 5, 1, 2

he meaning, to remind you, is that if the records of the original ile (see Fig. 4.1 in Chapter 4) are sorted into ascending S#

order, record 4 will appear irst, record 3 will appear second, and so on. And the inverse of this permutation is the sequence

4, 5, 2, 1, 3

his inverse permutation is that unique permutation that, if applied to the original sequence 4, 3, 5, 1, 2, will produce

the sequence 1, 2, 3, 4, 5. (If SEQ is the original sequence 4, 3, 5, 1, 2, then the fourth entry in SEQ is 1, the ith is 2, the

second is 3, and so on.)

Fig. 5.1: Permutation Table for the suppliers ile of Fig. 4.1

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

87

Core Concepts (Continued)

More generally, if we think of any given permutation as a vector V, then the inverse permutation V' can be obtained in

accordance with the simple rule that if V[i] = i', then V'[i'] = i. Applying this rule to each of the permutations in our given

Permutation Table, we obtain the Inverse Permutation Table shown in Fig. 5.2. (Exercise 4: Check that the table is correct.)

Fig. 5.2: Inverse Permutation Table corresponding to Fig. 5.1

We can now use the Inverse Permutation Table to build the Record Reconstruction Table without doing any sequential

searches. For example, the irst (S#) column of the Record Reconstruction Table can be built as follows:

Go to cell [i,1] of the Inverse Permutation Table. Let that cell contain the value r; also, let the next cell to the

right, cell [i,2], contain the value r'. Go to the rth row of the Record Reconstruction Table and place the value

r' in cell [r,1].

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Go Faster!

88

Core Concepts (Continued)

Executing this algorithm for i = 1, 2, ..., 5 yields the entire S# column of the Record Reconstruction Table. he other

columns are built analogously. Exercise 5: Check that the foregoing algorithm, when applied to the given Inverse

Permutation Table, does indeed produce the Record Reconstruction Table shown in Fig. 4.3 in Chapter 4. (Doing this

exercise should convince you that this algorithm is much easier to apply than the one given in Chapter 4; it should also

make you understand why the algorithm works, if you haven’t igured it out already. In future chapters, when I need to

build a Record Reconstruction Table, I’ll use this new algorithm.)

5.5 Record Reconstruction Revisited

Like the previous section, this one too is concerned with a possible implementation alternative. In that previous section,

the Permutation and Inverse Permutation Tables served as purely temporary structures, used in building the Record

Reconstruction Table but then discarded. However, it would be possible not to discard them ater all, but rather to use

them together as a replacement for the Record Reconstruction Table. For example, consider the following SQL query (a

projection of a restriction):

SELECT S.S#, S.STATUS

FROM S

WHERE S.CITY = ‘London’ ;

We can implement this query as follows:

•	 Step 1: Use a binary search to ind the London entries in the Field Values Table (see Fig. 4.2 in Chapter 4)

and extract the corresponding row numbers. In the example, this step yields the row numbers 2 and 3.

•	 Step 2: Use those row numbers to look up entries in the CITY column of the Permutation Table (see Fig.

5.1). his step yields the corresponding record numbers, 1 and 4.

•	 Step 3: Use those record numbers as row numbers to look up entries in the S# column of the Inverse

Permutation Table (see Fig. 5.2). his step yields the row numbers 4 and 1, and these values can be used to

access the corresponding S# values in the Field Values Table, S1 and S4.

•	 Step 4: Likewise, use the record numbers from Step 2 to look up entries in the STATUS column of the

Inverse Permutation Table. his step yields the row numbers 2 and 3, and these values can be used to access

the corresponding status values in the Field Values Table, which are both 20, as it happens. Execution of the

query is now complete.

Comparing the foregoing with what we would have had to have done using the Record Reconstruction Table, we can see

that one advantage is that we don’t have to chase pointers through columns that aren’t involved in the query (a fact that

could be useful in implementing projection operations, for example). On the other hand, the Permutation and Inverse

Permutation Tables together occupy twice as much space as the Record Reconstruction Table does.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

89

Core Concepts (Continued)

Having said all of the above, let me now say that for deiniteness I’ll assume an implementation from this point forward

that does do reconstruction via the Record Reconstruction Table, not via the Permutation and Inverse Permutation Tables

(barring explicit statements to the contrary). In other words, I’ll assume the Permutation and Inverse Permutation Tables

aren’t kept around at run time.

5.6 Pointers are Field Value Surrogates

Consider Fig. 5.3, a repeat of Fig. 4.3 from Chapter 4, which shows the Field Values Table for the suppliers ile of Fig. 4.1

together with a corresponding Record Reconstruction Table; more speciically, consider the Field Values Table in that

igure. Clearly, the position—that is to say, the row number—of any given ield value within its containing column in that

table serves as a unique encoding, or surrogate, for the value in question (in other words, the table provides an encoding

mechanism for its values). For example, consider the CITY column, which contains, in sequence, the city names Athens,

London, London, Paris, and Paris; clearly, the corresponding row numbers 1, 2, 3, 4, 5 can be regarded as surrogates for

those values (in sequence as indicated).4 What’s more, those very same row numbers can also be regarded as surrogates

for the supplier numbers S1, S2, S3, S4, and S5; the names Adams, Blake, Clark, Jones, and Smith; and the status values

10, 20, 20, 30, and 30 (in sequence as indicated in every case).

Fig. 5.3: Field Values Table of Fig. 4.2 and a corresponding Record Reconstruction Table

It follows from the foregoing that the Record Reconstruction Table can be regarded as containing such ield value surrogates

(and likewise for the Permutation and Inverse Permutation Tables, of course). For example, the STATUS column in the

Record Reconstruction Table of Fig. 5.3 contains, in sequence, the row numbers 4, 2, 3, 1, 5. hese row numbers are

surrogates for CITY values (not STATUS values); they stand for the values Paris, London, London, Athens, and Paris,

respectively, and this sequence is the sequence in which the city names will appear if we ask to see suppliers in status

sequence, thus:

SELECT S.S#, S.SNAME, S.STATUS, S.CITY

FROM S

ORDER BY STATUS ;

So now we know that row numbers serve as surrogates for ield values, and the Record Reconstruction Table in particular

contains such surrogates. his alternative perspective is occasionally useful, as we’ll see in Part III of this book. Now,

in the TR model as I’ve described it so far (and indeed as I’ll continue to describe it throughout the remainder of this

book), the surrogates in question are always row numbers. But other surrogate schemes are possible and could be useful

in diferent implementation environments—and so such alternative schemes are yet another illustration of the fact that

the TR model is capable of many diferent concrete implementations. Further details are beyond the scope of this book.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

90

Core Concepts (Continued)

5.7 The Field Values Table is a Directory

In this section, I want to consider (briely) another alternative perspective that can also be helpful on occasion. Consider

the Field Values Table in Fig. 5.3 once again; more speciically, consider the CITY column in that table. Let c be a value

(city name) in that column, and let the containing cell C be cell [i,4] (meaning city c has surrogate i). hen that subscript

[i,4] identiies the unique cell, C' say, in the Record Reconstruction Table that corresponds to cell C in the Field Values

Table. hat cell C' in turn is part of a zigzag that allows a record containing the CITY value c to be reconstructed.

All of the foregoing should really be familiar to you by now, and I mention it here mainly by way of review. However, let me

now point out something that I deliberately haven’t mentioned before: namely, that each column of the Field Values Table

efectively serves as a kind of directory—an index, almost!—to the Record Reconstruction Table and thence, eventually,

to the corresponding records. For example, consider the city name Athens, which appears in cell [1,4] of the Field Values

Table. Following the zigzag through cell [1,4] of the Record Reconstruction Table, we obtain the record :

(More precisely, we obtain a version of this record in which the let-to-right ield ordering is CITY, then S#, then SNAME,

then STATUS.)

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Go Faster!

91

Core Concepts (Continued)

Please note carefully, however, that though we might indeed say that each column of the Field Values Table is “almost an

index,” it certainly isn’t an index in the conventional sense of that term. Perhaps a better way to put it would be to say

that the column in question—together with the Record Reconstruction Table, which is certainly needed too—provides

the functionality of an index. hat is, the column in question and the Record Reconstruction Table together provide

indexing functionality (both direct- and sequential-access functionality) on the user ile on the basis of values of the

corresponding ield.

5.8 Miscellaneous Implementation Alternatives

I’d like to close this chapter by briely mentioning a few miscellaneous points regarding alternative implementation

possibilities for various other TR constructs.

•	 I’ve been talking so far as if the linkage information that ties together the ield values for a given record must

be implemented as a pointer ring or zigzag speciically. But other possibilities exist. For example, we could

replace each such ring (within any given Record Reconstruction Table) by two subrings that are connected

by means of some common “bridging” column. In the case of suppliers, for example, we might have one

subring connecting S# and CITY and another connecting S#, SNAME, and STATUS (column S# being the

bridging column, in this particular example). Such an arrangement would be advantageous if projection

over S# and CITY is a frequently requested operation—in other words, if queries of the form SELECT S.S#,

S.CITY FROM S are common, in SQL terms. What’s more, the pointers in such rings or subrings could be

either one-way (as I’ve been assuming so far) or two-way. Other options are also available; one such will turn

out to be important in connection with disk-based implementations, and I’ll discuss it in detail in Chapter

14.

•	 I’ve also been talking so far as if every column in the Field Values Table has to be maintained in sorted

order. In practice, however, such is not the case; there might well be some columns for which such sorting is

just not worth the overhead. An example might be a text column in which the entries are natural-language

comments.

•	 Furthermore, those columns that are sorted don’t all have to be sorted in the same way. In our examples,

I’ve shown all columns sorted in ascending sequence. However, it might be better to keep some columns

in descending sequence instead; and in the case of columns deined over a user-deined data type, the sort

order might be deined in terms of a user-deined “<” operator [40] or in some other way (see Chapter 15,

Section 15.5). As reference [63] puts it: “A sort order should be chosen based on its usefulness for display or

retrieval purposes in actual applications” (my italics).

•	 Since there’s a one-to-one correspondence between the cells of the Field Values Table and the cells of the

Record Reconstruction Table, the two tables could if desired be physically collapsed into one. Note: his

option will cease to be available, however, if the reinements to be discussed in Chapters 8 and 9 are adopted

(which in practice they probably will be).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

92

Core Concepts (Continued)

•	 he same is true, and is perhaps a more sensible proposition, in the case of the Permutation and Inverse

Permutation Tables (assuming, of course, that those two tables are indeed both kept around at run time, as

we saw in Section 5.5 was a possibility—but I remind you that I’m not going to make that assumption).

•	 he Permutation and Inverse Permutation Tables difer from the Field Values Table and the Record

Reconstruction Table in that there’s no reason why their let-to-right column order need be the same as the

let-to-right ield order of the corresponding ile. As a consequence, their let-to-right column orders can be

arbitrarily rearranged. Note: Actually, the same is efectively true of the Field Values Table and the Record

Reconstruction Table as well, inasmuch as such ordering has no meaning at the relational level. In practice,

it’s probably a good idea to choose a let-to-right column order for those tables such that, if attributes A

and B oten appear together in user-level queries (especially if WHERE clauses oten include conditional

expressions of the form WHERE A = ... AND B = ...), then the columns corresponding to those attributes

are adjacent in the two tables. In particular, these remarks are true of attributes that are components of the

same key; that is, columns that correspond to attributes in a multiattribute key should generally be adjacent.

See also the further remarks on this topic at the very end of Chapter 8.

Endnotes

1. he word user is always a little ambiguous. I don’t mean it here in the sense of the Chapter 3 “user level,” I

mean whoever is the direct, immediate user of the technology in question.

2. It’s true that, with hindsight, we might regard CODASYL (like TR) not as a model for “a complete DBMS as

such” but rather as an implementation technology, even though such was not the original intent. However,

CODASYL is fundamentally unsuited to that role for the kinds of reasons discussed in Chapter 2, as well as

many others.

3. he backend name was rather inappropriate, because relations aren’t a storage-level concept at all. In any

case, the name was subsequently changed for political reasons to Research Storage System.

4. Note that the very same ield value can have two or more distinct surrogates; for example, the value London

has surrogates 2 and 3. If the reinements to be discussed in Chapters 8 and 9 are adopted, however,

surrogates will be unique, in the sense that every ield value will have just one of them.

http://bookboon.com/

